电线电缆网 > 通讯电缆 > 福厦铁路GSM-R系统弱场强区无线覆盖施工技术(完整版)

福厦铁路GSM-R系统弱场强区无线覆盖施工技术 - 无图版

hansen --- 2010-07-16 12:15:02

1

摘要:铁路列车无线调度系统是铁路行车安全保障的重要手段。铁道部规定铁路区间实现无线调度场强全覆盖,因此,解决弱场强区无线覆盖问题尤为重要。文章介绍了福厦铁路的概况,论证了铁路GSM-R系统、场强覆盖方式盒弱场补强方案。

关键词:福厦铁路;GSM-R系统;光纤直放站;弱场补强;无线覆盖铁路无线列车调度通信系统是铁路行车指挥系统的重要组成部分,在保障行车安全、提高运输效率方面发挥着重要作用,其通信质量的好坏直接关系到铁路的行车安全。无线列调通信中,由于地形影响,导致机车与车站问的无线信号衰减太大,使机车与车站间无法有效通信,这种区域称为盲区,或弱场区。在无线列调系统工程设计中,应根据实际情况科学合理地选用弱场区覆盖方案,保证良好的场强覆盖,以满足列车调度的高可靠性要求。

一、福厦铁路介绍

福厦铁路作为《中长期铁路网规划》的重点建设项目,是我国铁路“十五”规划“八纵八横”路网主骨架之一,也是我省第一条高速铁路。福厦铁路北起福州,经福清、莆田、泉州、晋江,到达厦门,全长273km。

福厦铁路是福建省第一条城际间快速客货运通道,具有速度快、高密度、大能力、安全、舒适、节省运费等优势,将有效改善沿线地区交通和投资环境,更加充分发挥区域优势、港口优势和开放优势,加快海峡西岸经济区建设。

二、铁路GSM-R系统

铁路GSM-R(GSM for Railway)系统是一种基于目前世界最成熟、最通用的公共无线通信系统GSM平台上的、专门为满足铁路应用而开发的数字式的无线通信系统,针对铁路通信列车调度、列车控制、支持高速列车等特点,为铁路运营提供定制的附加功能的一种经济高效的综合无线通信系统。从集群通信的角度来看,GSM-R是一种数字式的集群系统,能提供无线列调、编组调车通信、应急通信、养护维修组通信等语音通信功能。GSM-R能满足列车运行速度为0~500km/h的无线通信要求,安全性好。GSM-R可作为信号及列控系统的良好传输平台,正在试验中的ETCS欧洲列车控制系统 #8197;(也称FZB)和另一种用于160km以下的低成本的列车控制系统 #8197;(FFB),都是将GSM-R作为传输平台。

GSM-R中文全称为铁路移动通信系统标准,是一种专门为铁路设计的专业无线数字通信系统,是中国首次从欧洲引进的移动通信铁路专用系统,它除了能提供无线列调、编组调车通信、应急通信、养护维修通信等语音通信功能外,还能够满足列车运行速度每小时500km的无线通信要求。

GSM网络优化解决的主要问题有:信道拥塞率高、呼叫成功率低;越区切换失败率高,掉话严重;通话质量低、有串音;移动台占用话音信道后呼叫释放、出现振铃后无通话、移动台接通后单边通话;设备完好率较低;中继电路的配置与实际话务不相符、电路群的每线话务量差别较大等。

三、场强覆盖方式

一般地说,GSM-R网络的场强覆盖是在沿铁路轨道方向安装定向天线,形成沿路轨大椭圆形小区,但在话务量较大而速度要求较低的编组站内采用扇形小区覆盖,而在人口密度不高的低速路段和轨道交织处一般是无CTCS #8197;(ChineseTrain Control System)系统的农村地区采用全向小区覆盖。铁路带状的特点.决定了铁路场强覆盖采用线状覆盖方式。

场强覆盖往往和具体的地理位置分布相关,根据具体的地理环境和基站的实际情况可以进行许多方面调整。改善下行链路的信号覆盖,可以采用提高基站的发射功率、增加天线的挂高、调整天线的水平角或垂直角和安装直放站等措施。一般来说,上述各种方法需综合使用,才能达到满意的覆盖。当某些基站或小区信号强度提高时,还应综合考虑其他问题,尤其是相邻小区的同邻频干扰问题。若上行链路的接收信号不是很好,可以考虑在基站的天线塔上安放塔顶放大器或降低馈线和跳线的损耗,以增强天线的接收信号强度。

四、弱场补强方案

根据GSM-R应用环境的特点,一般地,对于山体阻挡及路堑等弱场强区,可采用增加光纤直放站的解决方案:对于隧道弱场强区,可采用增加光纤直放站、漏缆 天线的解决方案;对于特大桥隧,可采用光纤直放站及漏缆 天线的组合解决方案:对开阔地域,既可采用基站,也可采用无线直放站或光纤直放站的解决方案。目前,对弱场处理的方案较多,既可采用单独方案解决,也可采用组合方案解决。目前解决区间弱场区主要有以下方式:(1)布放中继器及架设漏泄电缆;(2)布放无线中继台设备;(3)布放光直放站设备;(4)感应通信方式“400M 400k”。

(一)布放中继器及架设漏泄电缆方式

场强覆盖系统采用异频双工、半双工方式解决铁路隧道内弱场覆盖的技术是目前最常用的解决方案之一。系统由洞口中继器、洞内中继器、漏泄电缆及其相应配件组成。当隧道长度超过漏泄电缆的最大限制长度时,必须在隧道内设置洞内中继器,以放大漏缆传输信号。因此,组网时根据隧道长度和所用漏泄电缆性能的不同,有中小型隧道和长大隧道两种方案:前者,在隧道口设置洞口中继器,隧道内壁挂漏泄电缆;后者,在隧道口设置洞口中继器,隧道内设置一个或多个洞内中继器,隧道内壁挂漏泄电缆。洞口中继器通过天线接收到来自车站台的信号后,传送到漏泄电缆,完成隧道内的场强覆盖。隧道内的移动台发射的信号波由漏缆和中继器通过天线发送给车站台。本方案场强覆盖效果好,易于控制,技术成熟。但漏泄电缆造价较高,维修困难,只能应用于收发异频的系统。

hansen --- 2010-07-16 12:15:34

2

系统由I型中继器(洞口中继器)、Ⅱ型中继器(洞内中继器)、漏泄电缆及其配件组成。系统采用漏泄电缆外泄信号的方式实现弱场区的覆盖。I型中继器一般设置在离车站较近的地方,以保证车站电台的射频信号电平能够启动I型中继器进入工作状态;射频信号经I型中继器放大之后由漏泄电缆外泄,达到覆盖弱场区的目的;当弱场区长度超过漏泄电缆的最大长度时,必须设置Ⅱ型中继器,以放大漏泄电缆的传输信号。I型中继器通过天线与车站电台传递无线射频信号。当I型中继器接收到来自车站电台的下行信号时,将信号传送到漏泄电缆,经过信号外泄完成弱场区的场强覆盖;弱场区的移动电台发射的电波由漏泄电缆和中继器通过天线发送给车站电台。

由于弱场区地形的不同,中继器、漏缆可以有多种组合方式。(1)I型中继器(1台) 漏缆;(2)I型中继器(1台) Ⅱ型中继器 漏缆;(3)I型中继器(多台) Ⅱ型中继器 漏缆。

当弱场区地形比较多变时,比如经过一段山丘或隧道之后,有1km左右的开阔可视地段,接着又是隧道或者山丘,Ⅱ型中继器通过天线发出的射频信号覆盖开阔地段,同时,此射频信号开启下一个I型中继器。这种组合节省漏缆,降低了投资成本。工程中同一个半区间中继器的数量不易过多,最多不超过8个。

漏泄电缆过长,末端就会出现弱场;漏泄电缆过短,则会增加投资成本。所以,工程设计中应该权衡上下行信号的链路平衡,合理取定漏泄电缆的长度。

漏缆长度理论值计算公式为:

d=(Pt-L1-L2-Δ-ΔL-Vmin-M-S1)/S2(单位:km)

其中:

Pt——发射功率;

Ll——中继器馈线损耗;

L2——机车天线馈线损耗;

Δ——各种接头损耗,A=3dB;

ΔL——避雷器插入损耗,AL=0.3dB;

Vmin——机车最小可用电平(或中继器输入电平);

M——设计储备量,M=6.5dB;

S1——漏缆耦合损耗;

S2——漏缆传输损耗(单位:dB/km)。

(二)布放无线中继台设备方式

系统由一个或多个区间互控中继台配合适当的天线,通过4芯(或2芯)电缆通道与相应车站台构成链状网。区间互控中继台供电可通过4芯电缆中的2芯(或同一2芯电缆通道)由相应的车站台远供,也可由本地供电。每个车站台单方向最多可控制15个互控中继台,最长距离不超过20km。

互控中继台无线信道采用异频单/双工方式。当车站台发起呼叫机车台的下行呼叫时,通过4芯(或2芯)电缆通道将信号传输到其连接的所有区间互控中继台(从距车站台最近的互控中继台起编号为1~n)上,并一起发射呼叫信息;位于互控中继台覆盖范围内的机车台在所接收到的无线信号中选择最强的信号作为接收呼叫,并为应答车站台发起上行呼叫,设其中第1TI(1

(三)布放光直放站设备方式

系统由光直放站近端机(光近端机)、光直放站远端机(光远端机)、光纤和网管设备等组成。光近端机应设置在车站内距离车站电台较近的位置,通过射频耦合器与车站电台进行射频信号传递;通过光纤和光远端机连接;通过RS232、RS422或音频四线接口与网管设备连接。下行方向,车站电台发射的信号经耦合器进入光近端机进行电光转换,通过光纤传送至光远端机,光远端机把接收到的光信号转换为射频信号后通过天线发往移动台;上行方向,光远端机把移动台发射的无线射频信号转换为光信号,通过光纤传送至光近端机,光近端机对信号进行光电转换后,通过耦合器将射频信号馈入车站电台。直放站网管是为监测光纤直放站设备而开发的网管系统,能够提供光近端机、光远端机和模块等的故障报警,以及对直放站的相关参数进行设置。网管终端一般设置在无线检修所或者无线检修工区。

光直放站设备组网比较简单,其方式为:(1)一拖一方式,即一个光近端机连接一个光远端机;(2)一拖多方式,即一个光近端机连接多个光远端机。此时光近端机与光远端机之间可以星型连接,也可以共线连接。

(四)布放感应通信方式“400M 400k”

系统由“400M 400k”感应电台及过相装置构成。组网时设置车站台、机车台和手持台,并在接触网分相处设置过相装置。“400M 400k”感应电台是400MHz频段和400kHz频段合为一体的电台,两频段同时发射、同时接收,按二路话音输出方式工作。如果其中一路话音输出不能满足话音质量指标要求,将自动关闭。400kHz号的传输方式是利用波导感应原理,将400kHz信号感应到电力接触网导线上,利用接触网做波导线传输信号,它在区间内通信覆盖率达100%。在平原地区以及车站的多股道无电区,以400MH频段为主,利用两频段传输之间的互补,形成“400M 400k”的合体电台。

其优点是工程造价比漏缆方式低,适用于多路堑、多隧道的山区电气化铁路,但必须依靠电气化铁路的接触网设备才能进行传输,有一定的局限性。天线不易小型化,产品选择余地小。该方式一直没有大范围使用。

随着无线通信技术的不断发展,将会有更先进的技术用于解决无线列调的弱场区场强覆盖。但是,任何相关技术应用于实际工程时都有优劣之分,不管选择哪种方案解决弱场区问题,都应综合考虑线路地形、技术、经济等具体因素并进行比较,以选用适合工程的最佳解决方案。

hansen --- 2010-07-16 12:16:10

3

参考文献

[1]胡东源.GSM-R/CTCS在中国铁路的应用与发展战略[J].中国铁路,2003,(2).

[2]钱立新.我国铁路机车车辆现代化的关键技术[C].推进铁路新跨越加快经济大发展——中国科协2004年学术年会铁道分会场论文集,2004.

[3]胡晓辉,周兴社,党建武.基于GSM-R/CTCS的列车控制系统形式化描述和建模[J].计算机工程与设计,2006,(1).

[4]吴浠桥,段永奇,熊杰.GSM-R系统的无线覆盖理论分析[J].铁道工程学报,2007,(12).

[5]徐田华,唐涛.列车控制系统中数据通信子系统的帧丢失概率[J].中国铁道科学,2008,(3).

作者简介:李小俊 #8197;(1983-),男,湖北随州人,中铁建电气化局集团南方工程有限公司助理工程师,研究方向:铁路通信工程施工及管理。

-- 结束 --